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Abstract. We investigate the localization properties of the eigenvectors of a banded random 
matrix ensemble, in which the diagonal matrix elements increase along the diagonal. We 
relate the results to a transition in the spectral statistics which is observed as a parameter 
is vaned, and discuss the relevance of this model to the quantum mechanics of  chaotic 
Hamiltonian systems. 

1. Introduction 

It is by now well established that random matrix ensembles can provide a useful 
statistical model for the fine detail in the spectrum of quantum systems which have a 
chaotic classical limit: in particular the Gaussian orthogonal ensemble (GOE) (Porter 
1965) provides an excellent model for systems with real matrix elements (Bohigas, 
Giannoni and Schmidt 1984). Theoretical arguments (Berry 1977) suggest that the 
eigenfunctions of these systems can be modelled by a Gaussian random function with 
a known autocorrelation function, and numerical experiments support the view that 
this picture is essentially correct (Sebr 1990), although there are additional features 
which correlate with short period classical orbits (Heller 1984). If the eigenfunctions 
are quasi-random, then so are the matrix elements of any operator which uses these 
states as a basis: this hypothesis is obviously very important in modelling the dynamical 
response of chaotic quantum systems. In this paper we test the consistency of the idea 
that the matrix elements can be modelled by a random matrix: we set up a fandom 
matrix model which mimics the matrix elements of a chaotic Hamiltonian H = H,+ fi,, 
expressed in  the basis formed by the eigenstates of another chaotic Hamiltonian Go. 
If modelling the matrix by random variables is justified, we expect the spectral statistics 
of our random matrix model to be of GOE type, in  agreement with known results. We 
find that this is not always the case, and conclude that assumptions about the random- 
ness of the matrix elements, while they are a very useful approximation, should be 
used with caution. 
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Consider the matrix elements of 21 &+A, in the basis formed by the (energy 
ordered) eigenstates li) l j ) .  . . o f  Go: (i lHlj)= EcSfj+(ilHllj), where E, are eigenvalues 
of fin. These matrix elements are small if I€, - €,I >> h/r ,  where  is a classical timescale 
characterizing the autocorrelation of H, under the dynamics of H, (Feingold and Peres 
1986, Wilkinson 1987). We can model this matrix using a random matrix ensemble 
with the following properties: the matrix elements are independently gaussian dis- 
tributed, so that the ensemble is defined by giving the mean and variance of the 
distributions of the matrix elements H,: 

i.e., the matrix is banded, with 2b - 1 elements in each row, and with the mean of the 
diagonal matrix elements increasing along the diagonal. The parameters a and b are 
related to the density of states p of Ho and typical size U of the matrix elements of 
H ,  by b = p f i / r ,  a = l / p u .  The dimension N of the matrix is assumed to be very large, 
and to eliminate end effects it will become clear that N should satisfy N>> b2. We 
discuss the spectral statistics of this model, which undergo a transition from Poisson 
to GOE statistics as a parameter is varied. This transition depends on the fact that the 
eigenvectors of the matrix exhibit Anderson localization, and much of the technical 
content of this paper is concerned with estimating the localization length. The method 
used to estimate the localization length is an adaptation of an argument used by 
Chirikov et a1 (1981) for a unitary operator: we believe that it may be useful for both 
analytical and numerical studies of other localization problems involving hermitean 
operators. We note that a very similar random matrix ensemble was studied by Wigner 
(1955), whose analysis was confined to a study of the density of states. A more detailed 
discussion of the spectral statistics of our model and its semiclassical significance will 
be published elsewhere (Feingold et a1 1990). 

2. Spectral statistics of the model 

First we consider the special case in which LY =0, where the model is already well 
understood. When b = N, the model becomes the Gaussian orthogonal ensemble (GOE), 

and exhibits level repulsion: in particular the level spacing distribution P(S)  is very 
similar to the Wigner distribution (Porter 1965). On the other hand when b<c N our 
model is a banded random matrix, and a generalization (Johnson and Kunz 1983) of 
the Furstenberg theorem (Ishii 1973) implies that the eigenvectors are localized, with 
some characteristic localization length L. When L e  N, this implies that level repulsion 
does not affect the level spacing distribution P(S) ,  because eigenfunctions localized 
in regions separated by more than a localization length would not experience level 
repulsion. In this case it is clear that P ( S )  must be a Poisson distribution (Molcanov 
1981). When L - N  there is a crossover between Poisson and Wigner statistics, which 
has been characterized in a finite-size scaling picture by Casati et ol (1990). 

Now consider what happens when a is non-zero. An eigenvector 4t which is 
localized so that its dominant contributions are around the ith element will have an 
energy which is close to the value of the ith diagonal matrix element, with mean 
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value ai. The difference between Er and.a i  can he estimated by regarding the eigen- 
vectors as quasirandom, so that the off-diagonal terms contribute incoherently, hence 

IE,-nil =o(&). (2.1) 

Note that this estimate is consistent with the Wigner semicircle law (Porter, 1965) for 
the density of states of the GOE. States which are separated by a distance of the order 
of the localization length are expected to exhibit level repulsion if they have nearly 
equal energies, but states separated by many localization lengths cannot experience 
level repulsion. If U is sufficiently large, (2.1) shows that two states separated by more 
than a localization length are very unlikely to have similar energies, so that all pairs 
of states of similar energy exhibit level repulsion, and the level spacing distribution is 
therefore of the Wigner type. The condition for this is: 

aL y=->>I  
& (2.2) 

When y<< 1 on the other hand, states separated by several localization lengths can 
have similar energies, and we expect a transition to Poisson statistics as y + 0. In order 
to characterize this transition in the spectral statistics we must compute the localization 
length L as a function of a and b. 

3. Estimates of the localization length 

In this section we estimate the localization length when a = 0. The argument also 
suggests the existence of a scaling relationship when a is non-zero, which is confirmed 
by numerical experiments described in section 4. 

To estimate the localization length L at a = 0, we proceed as follows. We consider 
a vector uo with one non-zero element, at index zero (we consider the indices of the 
infinite-dimensional vectors and matrices to run from -m to +m): 

This vector can be written as a linear combination of eigenvectors +j of the matrix fi: 

If the localization length is L, then we expect that approximately L of the amplitudes 
a, are significant, and that most of the others are extremely small. Consider what 
happens when we multiply U, by f i  N times: 

U,.+ = f i " U , , = X  a,E,r+,. (3.3) 

When N is large, the sum is dominated by values of j for which /€,I is largest. For 
simplicity, let us assume that all but L of the q vanish: in this case, after a large 
number of multiplications the vector U,.+ is approximately equal to a multiple of +,,,, 
the eigenvector corresponding to the largest eigenvalue ~ E m d X ~ .  The number of multipli- 
cations required for +mar to become dominant is 
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where E.,,, is the next largest of the L contributing eigenvalues and p is the density 
of states for these L states. Since the distribution of eigenvalues is symmetric about 
E = 0, the density of states is: 

P = LllEmaxl.  (3.5) 
The vector uN therefore becomes essentially a multiple of &,, when N >> N* = L. 

ation S ( N )  of the distribution of its elements ( u ~ ) ~ :  
We can characterize the vector oN conveniently by considering the standard devi- 

The spread S of the vector vN increases until N = N * ,  when S( N )  saturates at a value 

S ( N * ) =  L - N " .  (3.7) 
The second approximate equality follows from (3.4) and (3.5). The strategy for calculat- 
ing the localization length is to compute S ( N )  using an alternative method which 
ignores the possibility of localization, and to solve (3.7) using this expression for S ( N ) .  
Taking account of the fact that some of the neglected coefficients a, will correspond 
to eigenvalues with magnitude greater than E,,,, we see that S ( N )  continues to 
increase logarithmically after the break point N *  instead of saturating, but this does 
not affect the equation (3.7) for the localization length. 

The spread S ( N )  can be estimated by considering the multipli-cation-of uo by a 
string of N different realizations of the random matrix ensemble, H ,  . . . H N :  - -  - 

u L =  fiNfiN-,... H2H,uo.  (3.8) 
We can easily compute S( N )  for the vector v k  since all the random variables involved 
are independent, The spread of the vector vN would be expected to be similar to that 
of U& until the localization effects become apparent when N = N*,  when the spread 
of U" continues to increase instead of saturating. 

We now proceed to set up a recursion relation involving the second moment S 2 ( N )  
of I&, and to compute its value when 01 =O. Because the matrix elements of the H .  
are random variables, we can regard the elements of the vectors U; as random variables, 
with second moment Y::  

y :  =((U;)?) (3.9) 
where ( ) denotes an average over the random matrix ensemble. The matrix elements 
satisfy 

(Ul+l), =!: ( f i" )JUL) ,  (3.10) 

so that the Y :  satisfy the recursion relation 
h 

Y:"= I (1+GY)Y;+a2i'Y:. (3.11) 

We consider the case in which b is large. In this case we can represent the Y :  by a 
function Y,,(x), and approximate the sum in (3.11) by an integral: 

Y"+,(x)=(  dx '  Y',(x')+01~x~Y~(x) 

,=-0 

r t h  

Y - h  

(3.12) 
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where ,yb(x) is a characteristic function on an interval of width 26. The sum, AN and 
second and fourth moments, BN, C, of the variances are given by (c.f. (3.6)): 

A, = d x  YN(x) BN = I-, dx x’ Y,(x) C, =(__dxx4Y,(x). (3.13) 

We can use (3.13) to write down recurrence relations for the A, and B,: performing 
the x integral in (3.12) and substituting (3.13) gives the following results. 

A,,, =2bAN+a2B, (3.14) 

BN+, =2bBN+~b3A,+a’CN. (3.15) 

When a =0,  taking the ratio of (3.15) to (3.14), and using the initial value S 2 ( 0 )  =0,  
gives the result 

m m m 

(3.16) BN S2( N )  =-=:Nb’. 
AN 

Using this result equation (3.7) gives N*= b’, so that 

L = 0 ( b 2 )  (3.17) 

We can also use this calculation to suggest a scaling relation for the localization 

L = b2f(x) (3.18) 

where x is a scaling variable which is a function of n and b. The scaling functionf(x) 
is of order unity at x = 0, and starts to change significantly around x = 1.  The following 

When a f 0 (3.16) remains valid if the terms proportional to a* in (3.14) and (3.15) 
can be neglected: approximating the ratio S 2 ( N ) =  BN/AN using (3.161, we see that 
the condition for neglecting this term in (3.14) is 

which is in agreement with numerical results obtained by Casati et al (1990). 

length which applies when 01 # 0: we seek a scaling relation of the form 

can be used io jdea;jfy the scajing varia‘lie x, ‘lui noi ihe scaling funci~on,~~x),  

1 
N << Ncr = - 

a 2 b ’  (3.19) 

Approximating the fourth moment CN using the square of the second moment, 
C,  = B&/A,, we see that the same condition applies for neglecting the rightmost term 
in (3.15). The localization length is not significantly altered if N,, (defined by (3.19)) 
is large compared to the break point N*. The point at which N,,= N *  corresponds 
to the point where the scaling variable is unity, i.e. 

1 
x = 1 - b’ = N *  = NCr= - 

a 2 b ’  (3.20) 

This shows that a suitable choice of scaling variable is x =  ab”’, so that our proposed 
scaling relation is of the form 

L = b z f ( x ) =  b2f(ab”’). (3.21) 

The argument above assumes that N,,x 1 and N *  >> 1 ,  as well as b >> I .  When a is 
large, the first condition need not hold: using (3.19) we find that NIT- 1 when a 2 b =  1. 
This suggests that deviations from the scaling relation (3.21) will become apparent 
when x>>b. In the limit of large n the problem can be analysed by treating the 
off-diagonal elements as a perturbation, but we will not pursue this further. 
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It is interesting to note that, provided a is small enough for the scaling relation 
(3.21) for the localization length to hold, the parameter y describing the transition in 
the spectral statistics is a function of x = ab"' alone, y = x f ( x ) ,  so that we have a one 
parameter scaling theory for the transition. 

4. Numerical experiments 

We have performed numerical experiments which verify these predictions, using 
matrices of dimension X=5b2, and eliminating states from the highest and lowest 
15% of the spectrum to guard against finite-size effects. Figure 1 shows numerical 
measurements of the entropy localization length (Casati et a1 19901, for various values 
of b, plotted to show the scaling function f (x). In the region where x >> 1, the function 
f i x )  =const. x - ~ "  (full curve in figure 1) is a good fit to the scaling function, at least 
up to x = 20. The results follow the scaling curve up to a break point, which increases 
as b + a: deviations from the scaling curve are already visible for the b = 3 data in 
figure 1. 

i 

Figure 1. Plot showing one parameter scaling function f (x )  for localization length, defined 
by L =  b * f ( x ) ,  x = u b ' / ' :  the different Styles of point indicate different values of b. The 
points deviate from the scaling relation for large x. but the break point where the deviations 
begin increases as h + m. 

We also investigated the transition from Poisson to Wigner statistics as y increases 
by calculating a histogram of the level spacing distribution P ( S ) ,  and performing a 
least-squares fit to a Brody distribution (Brody 1973), which interpolates between the 
Poisson and Wigner distributions as a parameter q is increased from 0 to 1. For these 
numerical experiments we used a sample of at least 125 matrices of dimension 800 for 
each point, and the bin size used for computing the histogram was 0.1. The results are 
shown in figure 2: most of the data lie on a scaling curve, implying that the level 
spacing distrib~tion is a f~nct ion of !he parame!er y ( x )  on!y. The devia!ions from the 
scaling curve are due to finite-size effects: for large values of b the localization length 
can be comparable to the dimension of the matrix and it is not possible to get a 
Poissonian level spacing distribution, which requires the superposition of many 
independent spectra. Usually the fit to the Brody distribution was very good as judged 
by eye (see figure 3),  but we do not claim that the fit is statistically significant. 
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1 1  

+ b=B 

x b=lO 

o bd2  

n b=K 

to 5 . r  
0 

Figure 2. The parameter q characterizing a fit of the Brody distribution to the level spacing 
distribution, plotted as a function of the scaling parameter x. Different styles of point 
indicate different values of h. The deviations at small q and large h are a finite-size effect, 
and arc discussed in the text. 

S. Discussion 

We have argued that the structure of the matrices of our ensemble mimics that of the 
matrix encountered when computing one chaotic quantum Hamiltonian in the eigen- 
basis of another such Hamiltonian. Also, we have shown that the model exhibits a 
transition in the form of its spectral statistics, rather than displaying the universal COE 

statistics observed in chaotic quantum systems. We should therefore consider the 
reasons why the transitional spectral statistics are not observed in chaotic systems. 

One possibility is that y is always large, so that GOE statistics are expected after 
all. We can use semiclassical estimates of the density of states p and typical size of 
matrix elements U, to compute how the transition parameter y scales as h + 0 (it is 
only in this limit that the spectrum becomes dense, so that we can compute well-defined 
statistics). These estimates give p =0( h-‘) and U = O( h‘”’)’2) (Wilkinson 1987, 

Figure 3. A typical level spacing distribution. showing the fit io a Brody distribution: the 
data are far h = IO,  x=2.26, and the fitted value of q is 0.484. 
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Feingold, Leitner and Piro 19891, so that a =O(fi"'+"'*), b = O ( h ' - d ) ,  x=ab"*= 
O ( h 2 - d ) ,  where d is the number of degrees of freedom. It follows that y(x )+cs  as 
h 0, implying GOE statistics, only if d > 2. In the important case when d = 2 semi- 
classical considerations do  not constrain y to be large. We must conclude that the 
observed GOE statistics are explained by differences between our model and the matrix 
elements of a semiclassical system. 

The method we use for estimating the localization length is clearly insensitive to 
many features of the model, provided the matrix elements are independent: for instance 
it does not matter if the matrix is not strictly banded (the matrix elements only have 
to decay rapidly away from the diagonal), and it does not matter whether or not their 
distribution is Gaussian. We conclude that the matrix elements of semiclassical systems 
must be subtly correlated. This is consistent with earlier work in which correlations 
between matrix elements were used to explain deviations of semiclassical spectra from 
the GOE model (Wilkinson 1988). 

In conclusion, we have investigated the scaling properties of the localization length 
in a banded random matrix ensemble, and we have shown that localization gives rise 
to a transition in the spectral statistics of this model, depending on a single scaling 
parameter. We have commented on the similarity of the matrices to those occurring 
in the quantum mechanics of chaotic systems, and shown that the results of using a 
random matrix to modei matrix eiements oi  these systems may be misleading. 
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